Dexamethasone-releasing biodegradable polymer scaffolds fabricated by a gas-foaming/salt-leaching method.

نویسندگان

  • Jun Jin Yoon
  • Jung Hoe Kim
  • Tae Gwan Park
چکیده

Dexamethasone, a steroidal anti-inflammatory drug, was incorporated into porous biodegradable polymer scaffolds for sustained release. The slowly released dexamethasone from the degrading scaffolds was hypothesized to locally modulate the proliferation and differentiation of various cells. Dexamethasone containing porous poly(D,L-lactic-co-glycolic acid) (PLGA) scaffolds were fabricated by a gas-foaming/salt-leaching method. Dexamethasone was loaded within the polymer phase of the PLGA scaffold in a molecularly dissolved state. The loading efficiency of dexamethasone varied from 57% to 65% depending on the initial loading amount. Dexamethasone was slowly released out in a controlled manner for over 30 days without showing an initial burst release. Release amount and duration could be adjusted by controlling the initial loading amount within the scaffolds. Released dexamethasone from the scaffolds drastically suppressed the proliferations of lymphocytes and smooth muscle cells in vitro. This study suggests that dexamethasone-releasing PLGA scaffolds could be potentially used either as an anti-inflammatory porous prosthetic device or as a temporal biodegradable stent for reducing intimal hyperplasia in restenosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds.

Macroporous scaffolds composed of biodegradable polymers have found extensive use as three-dimensional substrates either for in vitro cell seeding followed by transplantation, or as conductive substrates for direct implantation in vivo. Methods abound for creation of macroporous scaffolds for tissue engineering, and common methods typically employ a solid porogen within a three-dimensional poly...

متن کامل

Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor.

Heparin-immobilized porous biodegradable scaffolds were fabricated to release basic fibroblast growth factor (bFGF) in a sustained manner. Heparin was covalently conjugated onto the surface of macroporous PLGA scaffolds fabricated by a gas-foaming/salt-leaching method. Sustained release of bFGF was successfully achieved for over 20 days due to high affinity of bFGF onto the immobilized heparin....

متن کامل

Evaluation of in vitro spermatogenesis using poly(D,L-lactic-co-glycolic acid) (PLGA)-based macroporous biodegradable scaffolds.

Successful in vitro differentiation of spermatogenic cells into spermatids appears to offer extremely attractive potential for the treatment of impaired spermatogenesis and male infertility. Experimental evidence indicates that biocompatible polymers may improve in vitro reconstitution and regeneration of tissues of various origins. Here, we fabricated highly porous biodegradable poly(D,L-lacti...

متن کامل

Open pore biodegradable matrices formed with gas foaming.

Engineering tissues utilizing biodegradable polymer matrices is a promising approach to the treatment of a number of diseases. However, processing techniques utilized to fabricate these matrices typically involve organic solvents and/or high temperatures. Here we describe a process for fabricating matrices without the use of organic solvents and/or elevated temperatures. Disks comprised of poly...

متن کامل

Gas-Foamed Scaffold Gradients for CombinatorialScreening in 3D

Current methods for screening cell-material interactions typically utilize a two-dimensional (2D) culture format where cells are cultured on flat surfaces. However, there is a need for combinatorial and high-throughput screening methods to systematically screen cell-biomaterial interactions in three-dimensional (3D) tissue scaffolds for tissue engineering. Previously, we developed a two-syringe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomaterials

دوره 24 13  شماره 

صفحات  -

تاریخ انتشار 2003